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ABSTRACT

Several studies have shown promising results in adapting DNN-
based acoustic models as a mechanism to transfer characteristics
from pre-trained models. One such example is speaker adaptation
using a small amount of data, where fine-tuning has helped train
models that extrapolate well to diverse linguistic contexts that are
not present in the adaptation data. In the current work, our objec-
tive is to synthesize speech in different languages using the target
speaker’s voice, regardless of the language of their data. To achieve
this goal, we create a multilingual model using a corpus that con-
sists of recordings from a large number of monolingual and a few
bilingual speakers in multiple languages. The model is then adapted
using the target speaker’s recordings in a language other than the
target language. We also explore if additional adaptation data from
a native speaker of the target language improves the performance.
The subjective evaluation shows that the proposed approach of
cross-language speaker adaptation is able to synthesize speech in the
target language, in the target speaker’s voice, without data spoken
by the target speaker in that language. Also, extra data from a native
speaker of the target language can improve model performance.

Index Terms— Multilingual, DNN, TTS, cross-language,
speaker embedding, subjective evaluation

1. INTRODUCTION

There is a widespread demand for multilingual text-to-speech (TTS)
services, in which one TTS engine can synthesize natural and intel-
ligible speech in different languages. One of the important features
in multilingual TTS applications is to generate high-quality speech
of a speaker in different languages while still being perceived as
spoken by the same speaker. For some TTS applications such as
chatbot avatars, navigation systems, and speech-to-speech transla-
tion, it is important to maintain the voice identity of the original
speaker, as voice switch is not desirable when we switch from one
language to another [1, 2]. There is also a growing need for cus-
tomized voices in multilingual TTS services, where some users pre-
fer celebrity voices while some others prefer voices of their loved
ones. Such use cases require the personalization of multilingual TTS
systems using a small amount of data spoken in one language.

Recently, the neural TTS system is capable of producing very
high-quality speech samples with human-like prosody. Typically,
several specialized modules in the conventional statistical paramet-
ric speech synthesis (SPSS) pipeline are combined together in the
neural TTS framework to form a single neural network. For exam-
ple, neural vocoders such as WaveNet [3] and SampleRNN [4] di-
rectly convert linguistic features into the waveform. Other systems
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such as Char2Wav [5] and Tacotron [6] directly map the input text
into acoustic features. In DeepVoice [7, 8], the entire TTS pipeline
is implemented using a similar structure as the traditional TTS sys-
tem by replacing all modules with neural networks. Most of these
methods aim to disentangle speaker specific characteristics such as
timbre, style, accents from speech so that it is possible to manipulate
these characteristics [9, 10, 11]. However, a large amount of high-
quality recordings is usually required to adapt neural TTS systems
to a new voice, especially for cross-language synthesis (i.e., synthe-
sis in a language different from the target speaker’s language, where
both languages are included in the training data) [12, 11, 13]. In
contrast, the speech synthesis techniques based on multi-layer feed-
forward neural networks can be easily adapted using a small amount
of data while maintaining naturalness as well as similarity to the tar-
get speaker [14]. Furthermore, a simpler neural network such as
feed-forward architecture is suitable for real-time implementation.

There are few examples of multilingual TTS systems that em-
ploy neural network architectures in the literature. The multilin-
gual TTS approach proposed in [15] uses long short-term memory
(LSTM) architecture and adopts cluster adaptive training (CAT) to
model all variations of training languages and speaker variations.
They show that a multi-language multi-speaker (MLMS) model
(trained on six European languages) can be adapted to new lan-
guages (i.e., Polish and Portuguese) using limited training data and
the performance is better compared to building the models from
scratch. However, no result is reported for distant, unrelated lan-
guages such as East Asian languages. In [16], a single-speaker
model is built using an LSTM architecture that avoids voice switch
when synthesizing different languages. The model is built using
bilingual data of a speaker who speak both languages. Hence, it is
not possible to synthesize languages that the target speaker does not
speak. Another method, employed in [17], factorizes deep neural
networks (DNN) using speaker-specific layers and language-specific
layers to model speaker and language characteristics in the data.
They show that polyglot synthesis is possible without using speech
data from a bilingual speaker, albeit the lower speaker similarity
compared to DNN-based monolingual systems.

In this work, speakers in different languages are pooled together
to build a speaker-independent multilingual acoustic model. This
enables the model to learn the average statistics of what speech
sounds like from training data of multiple speakers including male
and female, various speaking styles, languages, and recording con-
ditions [12, 18]. As a result, the model parameters are particularly
well-suited for adaptation to speakers speaking in different lan-
guages or accents. The contributions of this paper include: (1) we
propose a transfer learning approach from a multilingual model via
DNN adaptation to the target speaker and show that it is possible
to synthesize different languages in the voice of the speaker regard-
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less of the languages they speak, and (2) we investigate if model
adaptation can be improved by using additional data from the target
language spoken by a different but native speaker of that language.
The rest of the paper is organized as follows. Section 2 discusses
related work. The cross-language speaker adaptation technique is
presented in Section 3. Section 4 describes features, databases,
and DNN configurations. Experimental results are presented and
discussed in Section 5 and 6. Finally, Section 7 concludes the paper.

2. RELATED WORK

Many techniques have been developed in the past to synthesize
speech in different languages with the same voice for HMM-
based synthesis [1, 19, 2, 20]. The cross-language synthesis can
be achieved using mixed-language methods [1], phone mapping
methods [21], and state sharing mapping methods [19]. For ex-
ample, [1] trained an average voice model (AVM) using data
from several speakers in multiple languages and adapted to a tar-
get speaker that spoke one of the languages used in the training.
Even though similar techniques have been proposed for DNN-
based speech synthesis [15, 17, 16], most works in the literature
have focused on monolingual systems that can generate multiple
voices [22, 23, 24, 25]. Recently, a multilingual TTS able to transfer
voices across languages based on Tacotron is proposed in [11]. The
model to estimate acoustic features was conditioned on linguistic
representations, speaker embeddings and language embeddings.
They used adversarial loss to disentangle the correlation between
language and speaker identity in the training datasets. In the current
work, the disentangled representations of speaker identity and lin-
guistic information are realized using a separate speaker encoding
network, and hand-crafted linguistic features and language codes.
Thus, we can achieve similar results but with a simpler and more
efficient frame-by-frame mapping using a feed-forward network.

3. CROSS-LANGUAGE SPEAKER ADAPTATION

Our cross-language speaker adaption approach is designed for the
conventional text-to-speech system that uses a simple feed-forward
DNN for acoustic modeling. In this particular case, the TTS is
multilingual and it consists of: a) a text analyzer that converts in-
put text from multiple languages to linguistic feature vectors, b)
language-specific duration models that estimate phoneme duration
from linguistic features given by the text analyzer, c) an acoustic
model to estimate acoustic features from linguistic features, and d)
a vocoder to generate audio from estimated acoustic features. We
use WORLD [26] as the vocoder. There are a few critical differ-
ences worth mentioning between our implementation of multilin-
gual TTS and a conventional monolingual TTS. First, the linguis-
tic features given by the text analyzer includes language code (one
hot vector for the languages included). While we still include a few
language-specific features, we convert critical language-specific fea-
tures such as phoneme ID to descriptors common across languages
such as places and manner of articulation, voicing, etc. Linguis-
tic features also include positional information of phoneme/syllable.
Second, the input to the acoustic model comprises not only linguis-
tic features (including the language code) but also speaker embed-
dings extracted from the neural networks (e.g., d-vectors) [27, 9].
Speaker embeddings are necessary to train an acoustic model with
multi-speaker datasets [28]. Figure 1 shows our training strategies
for the base multilingual acoustic model and speaker adaptation. The
base model is trained using a corpus that consists of recordings by
a wide range of speakers in the four languages listed in 4.2. Most

lang code

spk emb

ling feats
base polyglot 

acoustic model

acoustic

feats

lang code

spk emb

ling feats

speaker specific 

polyglot acoustic 

model

acoustic 

feats

Fig. 1. Illustration of the acoustic model adaptation technique for
multilingual TTS.

speakers only recorded in one language; a few speakers recorded in
two of the four languages. Our speaker adaptation strategies involve
fine-tuning of the base acoustic model using speech data from the
target speaker. We propose two adaptation strategies. In the first
strategy (baseline strategy), we fine-tune the base model only using
the target speaker’s recordings in the source language. In the sec-
ond strategy, we include a large amount of data spoken by a native
speaker of the target language, in addition to the target speaker’s
recordings in the source language. This is a regularization strategy
intended to avoid the model from over-fitting to the source language
and help the model to generalize better across different languages.

4. EXPERIMENTAL SETUP

4.1. Features
In our experiments, all systems were trained using 60 Mel-Cepstral
coefficients (MCCs), 3 band aperiodicities (BAPs), and fundamental
frequency F0 on log scale with their delta and delta-deltas features,
and an additional voiced/unvoiced binary feature. These acoustic
features were extracted from 48 kHz waveform at 5 millisecond in-
terval. Speaker embeddings are used as an input to encode speaker
identity. In our case, identity of the speaker was represented by
fixed-dimensional speaker embeddings from a speaker encoder net-
work. We concatenated 200-dim embedding vectors to the linguistic
features to form a total of 913-dim input feature vectors that included
language codes as augmented features into the DNN.

4.2. Databases
We pooled multi-speaker databases in four languages to build the
base multilingual acoustic model. A detailed breakdown is as fol-
lows: about 87 hours from 210 speakers in English (EN), about 50
hours from 65 speakers in Korean (KO), about 37 hours from 39
speakers in Japanese (JA), and about 56 hours from 28 speakers in
Mandarin Chinese (ZH). These databases were composed of high-
quality speech, including studio recordings by voice actors and reg-
ular speakers, as well as audiobooks.

The goal of this study is to investigate whether we can synthesize
speech when the speakers themselves do not speak the languages.
Multiple strategies were devised and compared in the experiments to
achieve our objective. In this paper, we evaluated the performance
of cross-language adapted acoustic models in ZH-EN and KO-EN
language pairs. For this purpose, we recorded speech from two male
bilingual target speakers, one fluent in ZH and EN, and another flu-
ent in KO and EN. This bilingual corpus allowed us to compare the
performance of cross-language speaker adaptation in four source-
target language pairs, namely ZH→EN, EN→ZH, KO→EN, and
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EN→KO. For each language pair, we trained three models based on
the type and amount of adaptation data. First, we used data (spo-
ken by the target speaker) in the source language only, to train the
baseline cross-language adapted acoustic model (model1). Next, we
added data spoken by a different, monolingual speaker but in the tar-
get language, as an alternative strategy (model2). The purpose of
this mixed-speaker data set is to investigate whether additional data
from any native speaker of the target language can help the cross-
language adaptation performance, especially in terms of accent and
quality. Lastly, we used bilingual data that amounted to the same
size as the monolingual data set (model1) to train a bilingual refer-
ence model (model3). Whilemodel1 andmodel2 represent our two
cross-language adaptation strategies, model3 represents the ground
truth case for performance comparison. Table 1 lists the amount
and type of adaptation data used in cross-language adaptation for all
source-target language pairs used in our experiments.

Table 1. Adaptation data used for fine-tuning the base multilingual
acoustic model. The additional data from monolingual non-target
speakers are indicated by *.

Lang. pair model1 model2 model3

ZH→EN
type ZH ZH + EN* ZH + EN

dur. (min.) 45 45 + 132 23 + 24

EN→ZH
type EN EN + ZH* EN + ZH

dur. (min.) 45 45 + 132 24 + 23

KO→EN
type KO KO + EN* KO + EN

dur. (min.) 26 26 + 132 12 +13

EN→KO
type EN EN + KO* EN + KO

dur. (min.) 26 26 + 132 13 + 12

4.3. DNN configurations

A feed-forward DNN with ten hidden layers was employed to train
multilingual acoustic model. For each hidden layer, a hyperbolic
tangent was used as the activation function, followed by a linear
activation at the output layer. The weight parameters were initial-
ized randomly using samples drawn from the normal distribution
(µ = 0, σ = 1/

√
hidden layer input size), and the models were

trained to minimize mean square error using stochastic gradient de-
scent, and a batch size of 1024. We applied batch-normalization to
each hidden layer except the first input layer. Learning rate was fixed
at 0.001, warm-up momentum was 0.4, drop-out rate was 0.02, and
the number of training epochs was 100. In order to fine-tune the
model to a specific language in bilingual corpus, all hidden layers
from the base polyglot model were adapted. We used Merlin toolkit
for training acoustic models [29].

5. SUBJECTIVE EVALUATION

To evaluate the different cross-language speaker adaptation strate-
gies, we conducted subjective listening tests to assess four aspects
of model performance: intelligibility, nativeness, acoustic quality,
and voice similarity to the target speaker. For each source-language
pair, we generated 10 test sentences in the target language using each
of the three adapted models 1. Every audio sample was evaluated by
at least 20 unique participants. In all tests, participants were asked to
wear headphones and were allowed to listen the sound clips multiple
times. In order to focus on performance of the acoustic models, we
did not use duration models from the TTS system. Instead, we used

1Samples are available in https://oben-ssw10.github.io/icassp2020/

phoneme duration given by forced alignment of natural recordings
spoken by a different native speaker.

Note that model1 and model2 were trained using our proposed
cross-lingual adaptation strategies, and model3 represented the
ground truth case where recordings from the target speaker in the
target language were available. Using speaker vectors and language
codes as inputs into DNN provided a method to control the voice
and linguistic characteristics in the output speech of DNN-based
speech synthesis. In case of model2, we used data from a different
speaker in the target language. We found that it is necessary to use
the source language code instead of the target language code when
synthesizing the target language. Without this adjustment, we ob-
served voice inconsistency in the model output. Most likely, during
the adaptation process, the model learned the correlation between
the speakers and the languages present in the adaptation data.

Fig. 2. Results of four subjective evaluations (intelligibility, native-
ness, acoustic quality, and voice similarity) presented in each row
using three sets of adaptation data (i.e.,model1 (m1),model2 (m2),
and model3 (m3)) for fine-tuning the base multilingual model. In
the figure, different language pairs are presented in each column.
The error bars represent the 95% confidence interval (CI) of a mean.

5.1. Evaluation results

In the first test, we evaluated intelligibility of the samples by ask-
ing native speakers to transcribe them as accurately as possible. For
each source-target language pair, 3 questionnaires were created; each
consisted of 10 sentences pseudo-randomly drawn from the three
models such that each participant would hear each of the 10 sen-
tences only once. We calculated the word error rate of their tran-
scription. Figure 2 (first row) shows that using target language data
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from another speaker can improve intelligibility. The improvement
is statistically significant in ZH→EN (z=4.271, p<0.05), where the
monolingual model (m1) produced less intelligible speech than its
mixed-language counterpart (m2). The opposite trend is observed
in EN→KO (z=-3.387, p<0.05), however. For the other two lan-
guage pairs, the differences betweenm1 andm2 are not statistically
significant (z’s<1.523, p’s>1.000).

In the second test, we evaluated how native-like the synthesizes
speech were. Native speakers rated the audio samples using a num-
ber between 0 “not native at all” and 100 “completely native”. From
Figure 2 (second row), using the bilingual adaptation set (m3, i.e.
the ground truth case) produced samples closest to native speech
(scores between 69-89; z’s>6.656, p’s<0.05 in all pairwise com-
parisons). Nevertheless, the other two adaptation strategies resulted
in somewhat native speech (scores between 48-67). Overall, using
extra data from the target language (m2) produced speech samples
that were less accented compared to the monolingual model (m1),
despite the mismatch due to different prosody from the two speak-
ers, except for one language pair (EN→KO: z=-4.327, p<0.05; the
other three: z’s>2.630, p’s<0.05).

In the third test, we evaluated the acoustic quality of the TTS
utterances. The samples were presented to native speakers in a
MUSHRA-like questionnaire [30]. Participants were asked “How
is the acoustic quality of the audio (e.g., clean/noisy, clear/muffled,
any odd, non-speech sounds)?” and rated the audio samples be-
tween 0 “bad” and 100 “excellent”. We found all models produce
good acoustic quality (scores between 67-78), where using bilingual
data yielded the best quality (m3; z’s>5.705, p’s<0.05 in all pair-
wise comparisons). Furthermore, using extra data from the target
language (m2) improved acoustic quality compared to the mono-
lingual model (m1) (EN→KO: z=-0.323, p=0.746; the other three:
z’s>2.003, p’s<0.05).

In the last test, we evaluated whether the personalized mod-
els were able to generate speech in the target speaker’s voice. It
is important to note that cross-language adaptation models generate
speech in languages different from the target speaker’s, but it is not
straightforward to compare voice across languages. This challenge
was overcome by the use of bilingual target speakers for this study,
which enabled us to use copy-synthesis speech in the target language
as the reference. Participants rated the voice similarity of the TTS
utterances with respect to the copy-synthesis speech on a scale be-
tween 0 “different person” and 100 “same person”. We found that
voice similarity can be improved with extra data from the target lan-
guage. Comparing m1 and m2, the improvement is statistically sig-
nificant in KO→EN and EN→KO (z’s>2.233, p’s<0.05). For the
other two language pairs, the differences are not statistically signifi-
cant (|z|’s<1.790, p’s>0.073).

6. DISCUSSION

In this study, we propose the strategy to include speech from a na-
tive speaker of the target language during adaptation. Compared to
the baseline method, this strategy can help generate more intelligible
and native-like speech, with higher quality and in a language that the
target speaker does not speak. However, we found that the language
code had to be switched to that of the source speaker to maintain
voice similarity. We believe this is due to the learned association
between language and speaker embeddings. Language code was in-
cluded in the model to account for allophones and other anomalies
between languages that were not fully defined by linguistic features
alone. Using source language code while generating target language
eliminates this advantage of using language code. Despite this draw-
back, the results show that our strategy improves quality, intelligi-

bility, and nativeness in most of the cases when compared to the
baseline approach, although some differences were not statistically
significant. The results also show small improvement in voice sim-
ilarity between the TTS output and the target speaker. It was un-
expected, and we regard this improvement as an effect of improved
quality, which brings the TTS output closer to the reference (copy
synthesis), not true improvement in timbre.

6.1. Generating speech in a novel language
We evaluated each speaker-adapted model only in one target lan-
guage, because references were available only in that language.
However, it is straightforward to generate target speaker’s speech in
other languages using the same models without any modification,
even for novel languages that are not included in the base model. We
designed the linguistic input features for training the multilingual
acoustic model in a way that, except for a few language-specific
features such as language code and lexical pitch patterns (e.g., ZH),
most features such as voicing and places/manner of articulation were
language agnostic. Thus, it is possible to build a text analyzer to
convert text of a novel language into compatible linguistic features
that allow us to generate speech in that language. In fact, we gener-
ated audios in Spanish, which was not included in our base model,
using the cross-language adapted models from this study. Our in-
ternal evaluation reveals that the utterances generated in languages
included in the base multi-lingual model (EN, ZH, KO, JA) are
more intelligible and natural than the utterances in a novel language
(Spanish). It shows the importance of including speech data from
the target language in the base model for cross-language adaptation.

7. CONCLUSIONS

This paper investigates speaker adaptation for cross-language syn-
thesis by constructing a multilingual model using speech data from
multiple speakers in four languages. Using a feed-forward architec-
ture, the model can exploit the common characteristics among dif-
ferent languages and speakers, and transfer the learned knowledge to
a new speaker regardless of the speaker’s language. We find speaker
embeddings and language codes useful in maintaining speaker iden-
tity across languages when synthesizing languages different from
the target speaker’s language. Overall, using extra data from the
target language spoken by other speakers improves cross-language
adaptation performance. The performance improvements can be ob-
served in all types of listening tests with most of the language pairs,
compared to the model adapted using source monolingual data only.
In future work, we plan to incorporate more languages and speak-
ers into the existing system, and experiment with the use of simi-
lar speakers from multiple languages to improve the voice similar-
ity of cross-language synthesis. Further, we plan to explore better
representations of speaker characteristics to help synthesize cross-
language speech that is more native-like, for example, by disentan-
gling accent/style/timbre factors from speakers. We also plan to in-
vestigate methods to prevent the model from learning the association
between language code and the speaker embedding present in the
training data.
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